zafar(transitive) - définition. Qu'est-ce que zafar(transitive)
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est zafar(transitive) - définition

IN SET THEORY, A SET WHOSE ELEMENTS ARE ALL SUBSETS
Transitive class; Transitive closure (set); Hereditarily transitive set; Transitive (set theory); Transitive closure (sets)

Zafar Nozim         
TAJIKISTANI MUSICIAN
Zafar Nozimov
Zafar Nozim (, , 2 June 1940 – 3 August 2010) was a folk singer from Tajikistan. He was a popular performer of Tajik national songs.
Wasi Zafar         
PAKISTANI POLITICIAN
Muhammad Wasi Zafar
Muhammad Wasi Zafar (12 January 1949 – 7 August 2021Ex-minister Wasi Zafar Passes Away) was a Pakistani politician. He was the former Law minister of Pakistan.
Ali Zafar discography         
ARTIST DISCOGRAPHY
List of songs recorded by Ali Zafar; Songs recorded by Ali Zafar; Husn (album)
Ali Zafar is a Pakistani pop and rock singer. He has released three studio albums and has composed three soundtrack albums.

Wikipédia

Transitive set

In set theory, a branch of mathematics, a set A {\displaystyle A} is called transitive if either of the following equivalent conditions hold:

  • whenever x A {\displaystyle x\in A} , and y x {\displaystyle y\in x} , then y A {\displaystyle y\in A} .
  • whenever x A {\displaystyle x\in A} , and x {\displaystyle x} is not an urelement, then x {\displaystyle x} is a subset of A {\displaystyle A} .

Similarly, a class M {\displaystyle M} is transitive if every element of M {\displaystyle M} is a subset of M {\displaystyle M} .